Most Powerful Magnet



  1. The magnet could also be used as a nanoscale microscope. In March 2012, scientists at the Los Alamos National Laboratory campus of the National High Magnetic Field Laboratory successfully produced the world's first 100 Tesla non-destructive magnetic field. Most powerful magnetic.
  2. Your Handiest Pal, MagnetPAL From hanging your stuff, to holding your bits, bots, and screws, to hiding a key or holding your hammer, MagnetPAL is the world's most powerful and useful magnet. Some of our customers organize their entire garage by hanging their stuff with MagnetPALs! MAGNETPAL - Most Powerful Magnet Ever Made.

Neodymium Magnets are currently the most powerful magnets in the unknown commercial world. It is called the King of magnets. It has more than 10 times the magnetic energy of ferrite and can support more than 640 times its own weight. It is extremely powerful, and scientists used several experiments to test how powerful neodymium magnets are.

What’s the Most Powerful Magnet?

Magnets have played a very important role in our daily lives and we can see magnets everywhere in our house. For example, we can find magnets in the microwave oven, mobile phone, toys, leather bags, and motors. But do you know what’s the most powerful magnet in the world? In this article, let’s take a deeper look into the most powerful magnet on the market today.

Neodymium magnet, also known as NdFeB magnet, is the most powerful type of permanent magnets available to consumers today.

Who found the NdFeB magnet?

In 1982, Masato Sagawa from Sumitomo Special Metals in Japan discovered the neodymium magnet. The magnetic energy product (BHmax) of this magnet is greater than that of a samarium cobalt magnet. Later, Sumitomo Special Metals successfully developed the powder metallurgy process and General Motors successfully developed the melt-spinning process, both of which can produce NdFeB magnets.

What Are the Main Components of NdFeB Magnets?

NdFeB permanent magnet materials are based on the intermetallic compound Nd2Fe14B. Its main components are rare earth elements neodymium (Nd), iron (Fe), and boron (B).

Among them, the rare earth element is mainly neodymium (Nd). In order to obtain different properties, some rare earth metals such as dysprosium (Dy) and praseodymium (Pr) can be used to replace neodymium (Nd). Iron can also be partially replaced by other metals such as cobalt (Co) and aluminum (Al). The boron content is small, but it plays an important role in the formation of tetragonal crystal structure intermetallic compounds, making the compound have high saturation magnetization, high uniaxial anisotropy, and high Curie temperature.

What Are the Applications of NdFeB Magnets?

NdFeB magnets have excellent magnetic properties and are widely used in electronics, electrical machinery, medical equipment, toys, packaging, hardware machinery, aerospace, and other fields. For example, you can find NdFeB magnets in permanent magnet motors, speakers, and magnetic separators, computer disk drives, magnetic resonance imaging equipment, etc.

The Subcategories of the NdFeB Magnets

Based on different manufacturing processes, NdFeB Magnets can be divided into two subcategories, namely sintered NdFeB magnets and bonded NdFeB magnets.

Bonded NdFeB magnets are corrosion-resistant, while sintered NdFeB magnets are easy to corrode and require a coating on their surface. The general coatings are zinc plating, nickel plating, environmentally-friendly zinc plating, environmentally-friendly nickel plating, and nickel-copper-nickel plating, environmentally-friendly nickel-copper-nickel plating, etc.

Besides, bonded NdFeB magnets have magnetism in all directions, while sintered NdFeB magnets are generally divided into axial magnetization and radial magnetization according to the required working surface.

Conclusion

Thank you for reading our article and we hope it can help you to have a better understanding of the neodymium magnet – the most powerful magnet in the world. If you want to know more about NdFeB magnets, we advise you to visit Stanford Magnets for more information.

As a leading magnet supplier across the world, Stanford Magnets has been involved in R&D, manufacturing, and sales of magnets since the 1990s and can provide customers with high-quality rare earth permanent magnetic products like neodymium magnets, and other non-rare earth permanent magnets at a very competitive price.

Ferrofluid on glass, with a rare-earth magnet underneath

Rare-earth magnets are strong permanent magnets made from alloys of rare-earth elements. Developed in the 1970s and 1980s, rare-earth magnets are the strongest type of permanent magnets made, producing significantly stronger magnetic fields than other types such as ferrite or alnico magnets. The magnetic field typically produced by rare-earth magnets can exceed 1.4 teslas, whereas ferrite or ceramic magnets typically exhibit fields of 0.5 to 1 tesla.

There are two types: neodymium magnets and samarium–cobalt magnets. Rare-earth magnets are extremely brittle and also vulnerable to corrosion, so they are usually plated or coated to protect them from breaking, chipping, or crumbling into powder.

The development of rare-earth magnets began around 1966, when K. J. Strnat and G. Hoffer of the US Air Force Materials Laboratory discovered that an alloy of yttrium and cobalt, YCo5, had by far the largest magnetic anisotropy constant of any material then known.[1][2]

The term 'rare earth' can be misleading, as some of these metals can be[3][4] as abundant in the Earth's crust as tin or lead,[5] but rare earth ores do not exist in seams (like coal or copper), so in any given cubic kilometre of crust they are 'rare'. The major source is currently China.[6] Some countries classify rare earth metals as strategically important,[7] and recent Chinese export restrictions on these materials have led some to initiate research programs to develop strong magnets that do not require rare earth metals.

Neodymium magnets (small cylinders) lifting steel balls. As shown here, rare-earth magnets can easily lift thousands of times their own weight.

Explanation of strength[edit]

The rare-earth (lanthanide) elements are metals that are ferromagnetic, meaning that like iron they can be magnetized to become permanent magnets, but their Curie temperatures (the temperature above which their ferromagnetism disappears) are below room temperature, so in pure form their magnetism only appears at low temperatures. However, they form compounds with the transition metals such as iron, nickel, and cobalt, and some of these compounds have Curie temperatures well above room temperature. Rare-earth magnets are made from these compounds.

The greater strength of rare-earth magnets is mostly due to two factors:

  • First, their crystalline structures have very high magnetic anisotropy. This means that a crystal of the material preferentially magnetizes along a specific crystal axis but is very difficult to magnetize in other directions. Like other magnets, rare-earth magnets are composed of microcrystalline grains, which are aligned in a powerful magnetic field during manufacture, so their magnetic axes all point in the same direction. The resistance of the crystal lattice to turning its direction of magnetization gives these compounds a very high magnetic coercivity (resistance to being demagnetized), so that the strong demagnetizing field within the finished magnet does not reduce the material's magnetization.
  • Second, atoms of rare-earth elements can have high magnetic moments. Their orbital electron structures contain many unpaired electrons; in other elements, almost all of the electrons exist in pairs with opposite spins, so their magnetic fields cancel out, but in rare-earths there is much less magnetic cancellation. This is a consequence of incomplete filling of the f-shell, which can contain up to 7 unpaired electrons. In a magnet it is the unpaired electrons, aligned so they spin in the same direction, which generate the magnetic field. This gives the materials high remanence (saturation magnetizationJs ). The maximal energy density B·Hmax is proportional to Js2, so these materials have the potential for storing large amounts of magnetic energy. The magnetic energy product B·Hmax of neodymium magnets is about 18 times greater than 'ordinary' magnets by volume. This allows rare-earth magnets to be smaller than other magnets with the same field strength.

Magnetic properties[edit]

Most Powerful Magnet

Some important properties used to compare permanent magnets are: remanence (Br), which measures the strength of the magnetic field; coercivity (Hci), the material's resistance to becoming demagnetized; energy product (B·Hmax), the density of magnetic energy; and Curie temperature (TC), the temperature at which the material loses its magnetism. Rare-earth magnets have higher remanence, much higher coercivity and energy product, but (for neodymium) lower Curie temperature than other types. The table below compares the magnetic performance of the two types of rare-earth magnets, neodymium (Nd2Fe14B) and samarium-cobalt (SmCo5), with other types of permanent magnets.

MagnetpreparationBr
(T)
Hci
(kA/m)
B·Hmax
(kJ/m3)
TC
(°C)
Nd2Fe14Bsintered1.0–1.4750–2000200–440310–400
Nd2Fe14Bbonded0.6–0.7600–120060–100310–400
SmCo5sintered0.8–1.1600–2000120–200720
Sm(Co,Fe,Cu,Zr)7sintered0.9–1.15450–1300150–240800
Alnicosintered0.6–1.427510–88700–860
Sr-ferritesintered0.2–0.4100–30010–40450
Iron (Fe) bar magnetannealed?800[8]?770[9]

Source:[citation needed]

Types[edit]

Samarium-cobalt[edit]

Samarium–cobalt magnets (chemical formula: SmCo5), the first family of rare-earth magnets invented, are less used than neodymium magnets because of their higher cost and lower magnetic field strength. However, samarium–cobalt has a higher Curie temperature, creating a niche for these magnets in applications where high field strength is needed at high operating temperatures. They are highly resistant to oxidation, but sintered samarium–cobalt magnets are brittle and prone to chipping and cracking and may fracture when subjected to thermal shock.

Most Powerful Magnetic Material

Neodymium[edit]

Neodymium magnet with nickel plating mostly removed

Neodymium magnets, invented in the 1980s, are the strongest and most affordable type of rare-earth magnet. They are made of an alloy of neodymium, iron, and boron (Nd2Fe14B), sometimes abbreviated as NIB. Neodymium magnets are used in numerous applications requiring strong, compact permanent magnets, such as electric motors for cordless tools, hard disk drives, magnetic holddowns, and jewelry clasps. They have the highest magnetic field strength and have a higher coercivity (which makes them magnetically stable), but they have a lower Curie temperature and are more vulnerable to oxidation than samarium–cobalt magnets.

Corrosion can cause unprotected magnets to spall off a surface layer or to crumble into a powder. Use of protective surface treatments such as gold, nickel, zinc, and tin plating and epoxy-resin coating can provide corrosion protection; the majority of neodymium magnets use nickel plating to provide a robust protection.

Originally, the high cost of these magnets limited their use to applications requiring compactness together with high field strength. Both the raw materials and the patent licenses were expensive. However, since the 1990s, NIB magnets have become steadily less expensive, and their lower cost has inspired new uses such as magnetic construction toys.

Hazards[edit]

The greater force exerted by rare-earth magnets creates hazards that are not seen with other types of magnet. Magnets larger than a few centimeters are strong enough to cause injuries to body parts pinched between two magnets or a magnet and a metal surface, even causing broken bones.[10] Magnets allowed to get too near each other can strike each other with enough force to chip and shatter the brittle material, and the flying chips can cause injuries. Starting in 2005, powerful magnets breaking off toys or from magnetic construction sets started causing injuries and deaths.[11] Young children who have swallowed several magnets have had a fold of the digestive tract pinched between the magnets, causing injury and in one case intestinal perforations, sepsis, and death.[12]

A voluntary standard for toys, permanently fusing strong magnets to prevent swallowing, and capping unconnected magnet strength, was adopted in 2007.[11] In 2009, a sudden growth in sales of magnetic desk toys for adults caused a surge in injuries, with emergency room visits estimated at 3,617 in 2012.[11] In response, the U.S. Consumer Product Safety Commission passed a rule in 2012 restricting rare-earth magnet size in consumer products, but it was vacated by a US federal court decision in November 2016, in a case brought by the one remaining manufacturer.[13] After the rule was nullified, the number of ingestion incidents in the country rose sharply, and is estimated to exceed 1,500 in 2019.[11]

Applications[edit]

Since their prices became competitive in the 1990s, neodymium magnets have been replacing alnico and ferrite magnets in the many applications in modern technology requiring powerful magnets. Their greater strength allows smaller and lighter magnets to be used for a given application.

Common applications[edit]

Neodymium magnet balls

Common applications of rare-earth magnets include:

  • computer hard disk drives
  • wind turbine generators
  • speakers / headphones
  • bicycle dynamos
  • MRI scanners
  • fishing reel brakes
  • permanent magnet motors in cordless tools
  • high-performance AC servo motors
  • traction motors and integrated starter-generators in hybrid and electric vehicles
  • mechanically powered flashlights, employing rare earth magnets for generating electricity in a shaking motion or rotating (hand-crank-powered) motion
  • industrial uses such as maintaining product purity, equipment protection, and quality control
  • capture of fine metallic particles in lubricating oils (crankcases of internal combustion engines, also gearboxes and differentials), so as to keep said particles out of circulation, thereby rendering them unable to cause abrasive wear of moving machine parts

Other applications[edit]

Other applications of rare-earth magnets include:

  • Linear motors (used in maglev trains, etc.)
  • Stop motion animation: as tie-downs when the use of traditional screw and nut tie-downs is impractical.
  • Diamagnetic levitation experimentation, the study of magnetic field dynamics and superconductorlevitation.
  • Launched roller coaster technology found on roller coaster and other thrill rides.
  • LED Throwies, small LEDs attached to a button cell battery and a small rare earth magnet, used as a form of non-destructive graffiti and temporary public art.
  • Electric guitar pickups
  • Miniature figures, for which rare-earth magnets have gained popularity in the miniatures gaming community for their small size and relative strength assisting in basing and swapping weapons between models.

Rare-earth-free permanent magnets[edit]

The United States Department of Energy has identified a need to find substitutes for rare-earth metals in permanent-magnet technology and has begun funding such research. The Advanced Research Projects Agency-Energy (ARPA-E) has sponsored a Rare Earth Alternatives in Critical Technologies (REACT) program, to develop alternative materials. In 2011, ARPA-E awarded 31.6 million dollars to fund Rare-Earth Substitute projects.[14]

Recycling efforts[edit]

The European Union's ETN-Demeter project (European Training Network for the Design and Recycling of Rare-Earth Permanent Magnet Motors and Generators in Hybrid and Full Electric Vehicles)[15] is examining sustainable design of electric motors used in vehicles. They are, for example, designing electric motors in which the magnets can be easily removed for recycling the rare earth metals.

The European Union's European Research Council also awarded to Principal Investigator, Prof. Thomas Zemb, and co-Principal Investigator, Dr. Jean-Christophe P. Gabriel, an Advanced Research Grant for the project 'Rare Earth Element reCYCling with Low harmful Emissions : REE-CYCLE', which aimed at finding new processes for the recycling of rare earth.[16]

See also[edit]

Most Powerful Magnet For Sale

  • Circular economy – Regenerative system in which resource input and waste, emission, and energy leakage, are minimised
  • Lanthanide – Trivalent metallic rare-earth elements
  • Magnet fishing – Searching in outdoor waters for ferromagnetic objects
  • Recycling – Process using materials into new products to prevent waste of potentially useful materials
  • Samarium–cobalt magnet – Strong permanent magnet made from an alloy of a rare-earth element and cobalt

References[edit]

  1. ^Cullity, B. D.; Graham, C. D. (2008). Introduction to Magnetic Materials. Wiley-IEEE. p. 489. ISBN0-471-47741-9.
  2. ^Lovelace, Alan M. (March–April 1971). 'More Mileage Than Programmed From Military R&D'. Air University Review. US Air Force. 22 (3): 14–23. Retrieved July 4, 2012.
  3. ^McCaig, Malcolm (1977). Permanent Magnets in Theory and Practice. USA: Wiley. p. 123. ISBN0-7273-1604-4.
  4. ^Sigel, Astrid; Helmut Sigel (2003). The lanthanides and their interrelations with biosystems. USA: CRC Press. pp. v. ISBN0-8247-4245-1.
  5. ^Bobber, R. J. (1981). 'New Types of Transducers'. Underwater Acoustics and Signal Processing. p. 243. doi:10.1007/978-94-009-8447-9_20. ISBN978-94-009-8449-3.
  6. ^Walsh, Bryan (March 13, 2012). 'Raring to Fight: The U.S. Tangles with China over Rare-Earth Exports'. Time Magazine. Retrieved November 13, 2017.
  7. ^Chu, Steven (2011). Critical Materials Strategy. DIANE Publishing. pp. 96-98. ISBN1437944183. China rare earth magnets.
  8. ^Introduction to Magnets and Magnetic Materials, David Jiles, Ames Laboratrories, US DoE, 1991
  9. ^3 Sources:
    • Beichner and Serway. Physics for Scientists & Engineers with Modern Physics. 5th ed. Orlando: Saunders College, 2000: 963.
    • Curie Temperature.' McGraw-Hill Encyclopedia of Science & Technology. 8th ed. 20 vols. N.P: McGraw-Hill, 1997.
    • Hall, H.E and J.R. Hook. Solid State Physics. 2nd ed. Chichester: John Wiley & Sons Ltd, 1991: 226.
  10. ^Swain, Frank (March 6, 2009). 'How to remove a finger with two super magnets'. The Sciencepunk Blog. Seed Media Group LLC. Retrieved 2017-11-01.
  11. ^ abcdNumber of children swallowing dangerous magnets surges as industry largely polices itself
  12. ^'Magnet Safety Alert'(PDF). U.S. Consumer Product Safety Commission. Retrieved 20 July 2014.
  13. ^'CPSC Recall Snapshot'(PDF). Alston & Bird. December 2016.
  14. ^'Research Funding for Rare Earth Free Permanent Magnets'. ARPA-E. Retrieved 23 April 2013.
  15. ^'DEMETER project'. etn-demeter.eu.
  16. ^'REE-CYCLE project'. cordis.europa.eu.

Further reading[edit]

  • Furlani Edward P. (2001). 'Permanent Magnet and Electromechanical Devices: Materials, Analysis and Applications'. Academic Press Series in Electromagnetism. ISBN0-12-269951-3.
  • Campbell Peter (1996). 'Permanent Magnet Materials and their Application' (Cambridge Studies in Magnetism). ISBN978-0-521-56688-9.
  • Brown, D. N.; B. Smith; B. M. Ma; P. Campbell (2004). 'The Dependence of Magnetic Properties and Hot Workability of Rare Earth-Iron-Boride Magnets Upon Composition'(PDF). IEEE Transactions on Magnetics. 40 (4): 2895–2897. Bibcode:2004ITM....40.2895B. doi:10.1109/TMAG.2004.832240. ISSN0018-9464. Archived from the original(PDF) on 2012-04-25.

External links[edit]

  • Standard Specifications for Permanent Magnet Materials (Magnetic Materials Producers Association)
  • Edwards, Lin (22 March 2010). 'Iron-nitrogen compound forms strongest magnet known'. PhysOrg.
Retrieved from 'https://en.wikipedia.org/w/index.php?title=Rare-earth_magnet&oldid=1015843111'